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AbstratThe deentralized and deregulated design of the Smart Grid neessitates a newapproah to the grid balaning problem. In this paper we implement dynami residentialustomer models validated by real-world data, and impose a balaning mehanism thatuses load shifting to redue the need to adjust power prodution through top-downontrol. Furthermore, we show that our proposed mehanism is salable to thousandsof ustomers. Finally, we explore the interation between retail energy brokers andtheir ustomers and examine the extent to whih truthful delaration of the ost ofurtailment an in�uene the pro�tability of brokers. The a priori determination of therelationship between ost delaration and pro�tability is a omplex mahine learningproblem for the broker. Thus, being able to know in advane what impat the spei�deviation will have, is ruial for designing broker deision strategies.1



1 IntrodutionA number of fators are onverging to fundamentally hange the struture of energy mar-kets, inluding the inreasing pries and environmental degradation assoiated with fossilfuels and nulear energy, the inreasing availability of renewable energy soures suh as windand solar, and the expeted transition to eletri vehiles. One response to these pressuresis the ongoing transition from regulated monopolies to liberalized markets in the eletriitysetor, but the 2000-2001 risis in the California energy market [4, 3℄ shows what an gowrong when poorly designed markets are introdued without adequate analysis. Another isthe various �smart grid� initiatives [1℄, inluding �smart� meters that an support dynamipriing, and demand-side management tehnology that an remotely manage loads in indi-vidual households and businesses. Market liberalization at both wholesale and retail levelsis also an important element, beause it allows for innovations that annot realistially arisein a regulated monopoly environment, and, at least in theory, should do a better job ofalloating the output of variable-output renewable power soures to ustomers.Two features distinguish retail eletriity markets from most other types of markets: (1)the need for ontinuous balane between supply and demand, and (2) the fat that all playersshare the distribution infrastruture, and eletriity is a pure ommodity produt. The resultis that without an e�etive mehanism design for balaning, individual retail brokers an �freeride� by selling power without having purhased an equal amount of power. This problemis relatively easy to solve in an environment where virtually all power is produed entrallyby baseload failities suh as hydro and fossil fuel plants, and where the retail ustomersare almost exlusively onsumers, and not produers of power [16℄. The problem beomesmuh more omplex as the proportion of variable-output renewable soures inreases, andas distributed prodution and storage failities are introdued into the retail grid.The liberalization of energy markets is expeted to lead to the appearane of many retailenergy providers, brokers, that have an ative role in the energy transations [2℄. Their maingoal is to maximize pro�t, by o�ering appealing energy tari�s to prospetive ustomers to2



build a robust ustomer portfolio, and supplying them by purhasing power in the wholesalemarket. The Power Trading Agent Competition1 [12℄ is a realisti ompetitive simulationthat allows brokers with various trading strategies to ompete in a market environmentequipped with smart meters, basi demand-side management apabilities, and a variety ofbaseload and renewable energy soures. Thus, this simulation environment is of speialinterest to study the design and appliation of balaning mehanisms.In previous work, we have developed a mehanism for market-based balaning [6℄ andshown that it has desirable properties, suh as inentive ompatibility with respet to theost for brokers to exerise the demand-side management apaities of their ustomers. Be-ause these results are only theoretial, it is important to evaluate the proposed balaningmehanism in realisti onditions. Reliable results depend on realisti ustomer modeling.Additionally, the salability of the balaning algorithm needs to be evaluated in a realistiontext, to prove that ould be appliable in the real energy grid.We study the balaning problem in the liberalized energy market in the light of theoptimal payment alloation in eah point of time, making use of demand-side management orontrollable apaities (suh as thermal storage failities) embedded in the ustomer models.Our main objetive is to test the inentive ompatibility and the salability of the proposedbalaning mehanism in an energy market with ustomers owning ontrollable apaities.This paper is organized as follows. In Setion 2 we provide the desription of the sim-ulation environment that serves as a validation testbed for our mehanism. In Setion 3we desribe the ustomer modeling approah followed to reate realisti ustomers and inSetion 4 the proposed algorithm is tested with respet to salability and truthfulness. InSetion 5 is presented a review of related literature. We onlude this paper with furtherextensions related to both the ustomer modeling and the balaning mehanism.1http://www.powerta.org
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2 Simulation environmentThe simulation environment [12℄ provides a realisti representation of a retail tari� marketfor eletri power. The tari� market allows brokers to publish tari�s for selling or buyingenergy and attrat both onsumers and produers. Within this ontext, the involved partiesonsumers, produers, and brokers at sel�shly in order to maximize their pro�t or utilitythrough transations in this market. An ideal portfolio of tari� ustomers will tend to on-sume power when it is inexpensive on the wholesale market, and produe power at timeswhen wholesale pries are high. Any imbalane is resolved by the Distribution Utility, (DU),whih is typially a regulated monopoly that owns and operates the distribution infrastru-ture and is ultimately responsible for balaning its grid. We assume prede�ned time intervalsfor the simulation (timeslots), t ∈ [0, 95], whih represent 15 min of real time. So, a day isbeing represented by 24 · 4 timeslots.The DU has two available tehnial mehanisms to ahieve balane: (1) it may purhaseor sell power through the wholesale �regulating� or �anillary servies� market, or (2) itmay exerise ontrated ontrollable apaities [17℄ that are o�ered by individual brokers.Controllable apaities are those that an be regulated "upwards" or "downwards" to on-sume overprodued energy or redue overonsumption, for balaning purposes. Householdexamples inlude water heaters, heat pumps or CHPs that an be remotely manipulated forregulatory ations. Other ontrollable apaities may be dishwashers or washing mahinesthat are pre-loaded and their starting timeslot is hosen aording to the balaning needs ofthe DU.2.1 CustomersThe ustomers are omposed by di�erent types of household ustomers varying from em-ployees, students to retired persons, hildren, shift workers, unemployed et., representedaordingly in the simulation environment. Eah household is equipped with a set of house-4



hold applianes and the persons living in this household perform various domesti ativities,using household applianes. People may live in single apartments or family houses. Con-sequently, for eah onsumer n ∈ N , a spei� energy demand dn,t is alulated for everytimeslot t, derived by the ativities performed in the household during this spei� timeslot,as desribed in details in Setion 3. Additionally, eah household has a prede�ned maximumamount of ontrollable apaities. This amount inludes apaities that an be manipu-lated by the DU in order to over any potential overprodution or redue any potentialoveronsumption. More spei�ally, on the ustomers's side domesti applianes suh asthe dishwasher, the washing mahine, the heating pump et are some of the ontrollableapaities available for balaning.The ustomers interat in the tari� market with the brokers, and their ontrollable a-paities beome part of their portfolio. More spei�ally, the brokers are publishing energytari�s to attrat ustomers, over their energy demand and make pro�t through these trans-ations. The ustomers that are ontrated to a spei� broker, ompose the broker's totaldemand, as an aggregation of all the partiular demanded amounts of energy, ∑n∈Bj
dn,t.Furthermore, the aggregation of eah ustomer's ontrollable apaities omprise the bro-ker's total ontrollable apaities that an be regulated either downwards in order to balanepotential overprodution or upwards to balane overonsumption. We denote those ontrol-lable apaities C−

j for eah broker Bj and symbolially assume that it has negative values,
C−

j ∈ (−∞, 0) for downwards regulation. Respetively, the broker's total ontrollable apa-ities for upwards regulation (in other words redue onsumption) are symbolially denotedas C+

j ∈ (0,+∞).2.2 ProduersLarge-sale produers are the Generation Companies, GenCos, attempting to supply theenergy market with the amount needed in order to prevent any shortage periods. Spei�ally,they are produing for eah timeslot, t, amounts of energyGk,t whih vary among the di�erent5



GenCos, k ∈ N . They interat with brokers, in respond to their tari� o�ers, so as to bene�tfrom being part of their portfolio. The brokers's objetive is to attrat as many produers asthey need both to make pro�t and maintain a balaned portfolio. To this end, the aggregationof the ontrated GenCos' prodution omposes the broker's total prodution, ∑k∈Bj
Gk,t.This prodution for eah GenCo is onsidered onstant with no variation over the timeslots.This hoie is supporting our main purpose, whih is the thorough investigation of ustomer'sdemand and use of ontrollable apaities to the balaning diretion.2.3 BrokersThe brokers Bj, at as intermediary parties in the energy market having transations withboth onsumers and produers. Their aim is to make pro�t through those transation,maintaining at the same time a balaned portfolio. More spei�ally, for eah timeslot t, thenet imbalane for eah broker Bj is:

xtj =
∑

k∈Bj

Gk,t −
∑

n∈Bj

dn,t (1)and an be positive xtj > 0, overprodution and negative xtj < 0, overonsumption. Thebrokers have to delare this net imbalane to the DU. An example of broker's total ontratedsupply and demand is presented in Fig. 1 (the generated demand and supply urves omefrom the ustomer models desribed in setion 3). The distane between the two urves ineah timeslot represents the broker's imbalane for the examined timeslot.Additional feature of the brokers' portfolio is the ontrollable apaity that an be reg-ulated either upwards or downwards, cj ∈ (C−
j , C

+

j ). This ontrollable apaity range isalso reported to DU, in order to make use of the amount needed to balane demand andsupply. In ombination with their ontrollable apaities the brokers, delare osts for up-wards regulation (prodution) and pro�ts for downwards regulation (onsumption). In the�rst ase the DU pays to the brokers the ost for produing this extra apaity for balane's6
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Figure 1: Broker's Contrated Supply and Demand for eah time slot in a 24h horizon.sake. In the seond ase the brokers pay the DU for the revenue they make for having theirustomers onsume this extra energy amount. In both ases the main objetive for DU isto minimize the payments (from the DU's side) whih in the �rst ase are negative and theseond ase are positive. More spei�ally, in eah timeslot the broker delares the amountof ontrollable apaity that is willing to regulate upwards or downwards aompanied withthe orresponding ost and revenue funtions. The DU aggregates those delarations andmakes use of the amounts that minimize both the ost payments (positive) and the pro�tpayments (negative). In ase of the ost and pro�t funtions desribed below, the problemof the optimal payment alloation is a onvex-optimization problem.In the presented simulation the brokers use quadrati umulative ost funtions in or-der to determine the ost on the ontrollable apaity units. The quadrati ost funtionassumption is based on the fat that for eah extra ontrollable apaity needed for the bal-aning, the broker needs to pay more to the orresponding ustomer, in order to make thisunit available to the balaning mehanism. Thus, the quadrati funtion is a good approx-imation of this non-linear relationship between the ontrollable apaity units and the ostthat the broker has to pay, to make them available for balaning. The general ost funtionform used in our approah is as follows:
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costup,j(cj) = a · cj2 + b · cj + e (2)with a > 0 and e > 0 in order to have monotonially inreasing marginal ost and tosatisfy the onstraint that for cj ∼ 0 we have costup,j(cj) ≥ 0. The graph in Fig. 2 depits avariety of umulative ost funtions orresponding to the brokers in the market. We hoosea starting ost for the ontrollable apaity, so we must always have e 6= 0. As far as theumulative revenue funtion is onerned, the brokers have funtions of the following form:
revenuedown,j(cj) = g · 3

√

cj − d (3)with g > 0 and d > 0 in order to have monotonially dereasing marginal pro�t. Thereason for this hoie is desribed by the idea that no, the broker has t be paid by the ustomerfor every extra ontrollable unit that the ustomer an onsume (downwards regulation).Thus, for eah extra unit, the ustomer has to pay less to the broker, sine the broker needsthis downward regulation to have a balaned portfolio, while the ustomer may not need toonsume this extra unit. Common example is the ase that the ustomer may turn his/herheating pump on for onsuming the extra energy. With this revenue funtion, we assure boththat the ustomer will onsume only in the ase that he/she needs to onsume (otherwise,there is no reason to pay the broker), and at the same time the broker, has his portfoliosurplus onsumed, avoiding the high imbalane penalties by the DU. The graph in Fig. 3depits a variety of umulative revenue funtions orresponding to the brokers in the market.The revenues are denotes with negative values, sine those revenue amounts need to be paidby the broker to the DU.2.4 Distribution UtilityThe Distribution Utility ats as a market operator that is responsible for maintaining thebalane between the trends of demand and supply. On every timeslot, the brokers report8
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Figure 2: Cumulative ost funtions for ontrollable apaities, upwards regulated.
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Broker 3Figure 3: Cumulative revenue funtions for ontrollable apaities, downwards regulated.to the DU the net imbalane in their portfolio, xtj . The DU in return imposes payments orrewards that orrespond to ontrollable apaities used for the balaning proedure. Thisalloation must be optimal and provide redits to the brokers that partiipate. The paymentalloation mehanism is desribed in Setion 4.
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3 Customer Modeling3.1 Residential Model DesriptionA realisti ustomer model will provide aurate validation of the proposed balaning meh-anism. Thus, we reate implement various load pro�les based on statistial data referring tothe appliane availability, the residents' shedule, as well as applianes' onsumption dataover the day. The saturation data for eah appliane determine the perentage of the pop-ulation that have possession of eah appliane. These data ome from the "Bundesverbandder Energie und Wasserwirtshaft (2009)" as presented in [8℄. Fig. 4 depits the modelingproess as followed to reate the individual ustomer models. The reation of eah individualustomer is a highly dynami proess, as eah household is reated in a stohasti way withvarious features and ativities interdependenies. In Fig. 5 are presented the applianesinluded and the respetive saturation.

Figure 4: Residential load urve reation.Having spei�ed the appliane-set available in eah household, the oupany pro�leshould be de�ned. In order to speify the oupany of eah household we assume the H0pro�le as presented in [8℄. Aording to H0 pro�le the population is divided to workingpeople, students, et. who are present in the household during pre-spei�ed periods before10



Figure 5: Appliane saturation (soure H0 pro�le).Table 1: H0 pro�le and the share of eah group.Working type Share (%) Start work (hour of the day) Absene for work (hours)worker, student 53 [7− 8.30] 8unemployed, retired 40 - -shift worker 7 random 8or after their absene for working ativities, to retired, unemployed, et. who are mostlypresent in the household and shift-workers who are absent from household during unspei�edperiods over the day. Table 1 is presenting the share of eah group in the whole population.For the working people we assume that they start working in the interval [7 − 8.30], workfor 8 hours and return to their domesti ativities during the interval [17 − 18.30]. Theunemployed/retired people are assumed to wake up in the morning in the same interval
[7− 8.30] and spend most of their time in domesti ativities.In order to reate the residential load urve orresponding to eah household, the ap-plianes funtionality has to be divided into yles lasting one timeslot (15 mins) and thestarting points of the di�erent ativities to be alloated aording to the ustomer's preseneor absene. At this point a logial sequene of ativities is followed and the di�erent level ofativities dependenies is determined based on the people's oupany. During ustomer'sabsene or over night we assume onsumption from applianes that funtion independentlyfrom human's presene (i.e washing mahine that has been loaded by the resident, hargersand other eletroni devies) and standby onsumption from the applianes available in eah11



Table 2: Applianes data referring to the power onsumption and stand-by onsumption,total funtionality duration and daily probability of ourrene. Data for power onsumptionand yles [8℄, for standby onsumption [15℄, and probability of ourrene [13℄.Appliane Consumption Stand-by Duration Probability(W) Consumpt.(W) (min) of OurreneWashing mahine 600 6 105 0.32Dryer 1410 2.2 105 0.29Refrigerator 140 1.7 15 1Freezer 106 1.7 15 1Stove and Oven 1840 2.2 30 0.585Eletroni Devies 150 67 90 1Lighting Installations 350 0 120 1Cirulation Pump 90 2.2 975 0.3Dishwasher 530 1.3 135 1Instantaneous water heater 12000 0 15 0.3household. The data used for eah appliane are depited in Table 2.In order to determine the starting point of eah ativity inluding spei� applianes, wetake into aount the probabilities of ourrene in a day [13℄ as presented in Table 2. Thoseprobabilities are alulated as a weighted average from the probabilities of ourrene duringthe weekdays and the weekends. For the eletroni devies the average of all those devies'probabilities is used (TV, PC, stereo et.). Consequently, aording to the probability ofourrene, the saturation and the working type of eah ustomer we reate individual loadpro�les, whih vary on the applianes available, the working hours et. The presented modelis highly dynami as it inludes all kind of ativities in a regular household and takes intoaount the interdependenies between them. Additionally, depending on the number ofustomers residing in a spei� household, the onsumption varies as there may be overlapin eah person's ativities. Using the urrent model, we are able to simulate large populationsof residential ustomers, inluding all the partiular residential onsumption harateristis.
12



3.1.1 Customer modeling veri�ationThe proposed model is being tested against real-world data in order to on�rm its auray.The data available are household onsumption measurements referring to time slots of 15minutes for a week's time horizon and are obtained in ooperation with European Distribu-tion Utility. They are oming from 24 households in the Netherlands and they are used togenerate an aggregated pro�le whih is tested against the generated pro�le from our model.Those data are onsumption measurements, obtained before any balaning ations. The se-ond pro�le is generated for 24 load urves piked randomly from our simulation. Those 24load urves are aggregating data from onsumption over a week's horizon. The omparisonin the two pro�les is presented in the Fig. 6. We use Pearson's oe�ient r = 83% as agoodness of �t for the two urves [? ℄. This means that the aggregation of 24 weekly loadurves is 83% orrelated with the respetive aggregation of 24 weekly load urves pikedrandomly from the real onsumption data, whih indiates a very high �t.
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Figure 6: Generated load urve against load urve from real data.
4 Validation of the Balaning AlgorithmWithin the ontext of the simulation environment presented in Setion 2 we validate thebalaning mehanism proposed in [6℄. More spei�ally in this balaning mehanism the13



VCG [6℄ payment alloation is used, where eah broker pays "opportunity ost" that itspresene introdues to all the other brokers. If the assumption of no real-time mathing ofthe brokers' imbalanes holds (the brokers are not allowed to ounterbalane eah other'simbalane), the DU is responsible for making use of the ontrollable apaities available ineah broker's portfolio to ahieve the optimal ombination in order to have minimal ost.Aording to the VCG mehanism (de�ned on the minimal ost and not on the maximumwell fare) the payments to or from ith broker in the simulation are:
pi(δ) = −

∑

j 6=i

δ−i
j · costj(δ−i

j ) +
∑

j 6=i

δ−i
j · costj(δij) (4)where δ is the vetor with the optimal apaity alloation and δ−i

j is the vetor with theoptimal apaity alloation if we exlude the ith broker, i.e. the ontrollable apaity for thisbroker is onsidered 0. For extended proof and explanation of the mehanism see [6, 12℄. Theost funtion for the orresponding ontrollable apaities is denoted by costj(·). If xi eahbroker's imbalane, we have ∑

i∈N xi < 0 in ase of over onsumption and ∑

i∈N xi > 0 forover prodution. In the �rst ase, the ontrollable apaities (CC) for upward regulation areused (CC > 0) and in the seond ase the ontrollable apaities for downward regulationare used (CC < 0). In both ases, if we assume ost and revenue funtions as desribed inSetion 2.3, the problem of de�ning the optimal apaity and payment alloation is a onvexoptimization problem [5℄ and an be solved by various available methods (eg. interior-pointmethods et).The proposed balaning mehanism applies load shifting in the sense that in order toresolve the imbalanes in the urrent timeslot, the loads ontrolled, are shifted to the nexttimeslot. Thus, the Demand Side Management (DSM) tehnique used, avoids avalanhee�ets that our from long term load shifting or postponing.Consider the optimal payment alloation as presented in Table 3. In this senario we havea total imbalane ∑i∈N xi = −9.6 · 104 (overonsumption), so the ontrollable apaities for14



Table 3: Payment alloation for the ontrollable apaities aording to VCG mehanismBroker Surplus Control. Cost pi Capaity Used(W) Capaity(W) ($) ($) (W)1 −1.24 · 104 4.76 · 104 3.62x2
1 + 8.86x1 + 4.69 −0.36 · 109 0.69 · 1042 −2.01 · 104 8.98 · 104 0.98x2
2 + 8.28x2 + 1.29 −1.51 · 109 2.55 · 1043 −1.81 · 104 5.11 · 104 1.24x2
3 + 8.60x3 + 2.64 −1.14 · 109 2.02 · 1044 −3.43 · 104 4.27 · 104 5.84x2
4 + 0.22x4 + 0.05 −0.22 · 109 0.43 · 1045 −1.17 · 104 6.64 · 104 0.63x2
5 + 1.46x5 + 0.61 −2.69 · 109 3.97 · 104upward regulation are used. Here we assume 5 brokers in the simulation and 50 onsumersand 50 produers. Eah broker's portfolio imbalane is depited in the olumn Surplus.Further, eah broker's ontrollable apaity for upward regulation is presented in the olumnControl. Capaity. For eah broker, the ost funtion for the ontrollable apaity is de�nedin the olumn Cost. We assume the ost funtions cost(ci) = a · c2i + b · ci + e satisfyingthe onstraints presented in Setion 2.3. With ci,max is denoted the ontrollable apaitythat eah broker makes available to the DU for balaning and x the total imbalane in themarket for the urrent timeslot. In order to alulate the optimal vetor δ with the apaityalloation, we onlude to the minimization problem:

minimize
∑

i∈N cost(ci)

subject to 0 < xi < ci,max

and
∑

i∈N xi = x

(5)whih is a quadrati optimization problem. N is the number of the brokers in the market.In the ase that the ost funtions on the broker's side are in the form desribed in Setion2.3, the problem is onvex and various approahes an be used in order to reah to a solution(interior-point et.).4.1 Salability AnalysisA ruial fator for the appliability of the balaning algorithm is the salability. Under theassumption that the ost and pro�t funtions, on the broker's side, have the form desribed15



in Setion 2.3, the optimization problem for the payment alloation is onvex [5? ℄. In Fig.7 the runtime of our algorithm is presented in relation to the number of ustomers in thesimulation. For simpliity's sake, but without loss of generality, we assume equal number ofproduers and onsumers in the energy market ([1-500℄ onsumers, [1-500℄ produers). Thebrokers in this experiment are varying in the range of [1-15℄. The presented runtime for everynumber of ustomers inludes the time needed for alulating the ustomer's onsumption atthe examined timeslot, the time needed for de�ning the optimal apaity ombination andthe runtime spent for payment alloation. The inrease of the ustomers does not lead to astritly linear inrease of the runtime, sine for eah group of ustomers the applianes, thepersons, the shedules vary. As a result, the ontrollable apaities are di�erent. This leads todi�erent optimization problems for every number of ustomers (onsumers and produers),whih are di�erentiated on the runtime for de�ning the optimal solution. Another fatorwhih a�ets the runtime is that the optimization di�ers in ase of surplus or shortage. Inase of surplus the DU makes use of the ontrollable apaities regulated downwards andminimizes the payments over the funtion revenuedown,j(cj) = g · 3

√

cj − d while in ase ofshortage the upwards regulated ontrollable apaities are used and the optimization problemis referring to quadrati funtions costup,j(cj) = a · cj2 + b · cj + e. In Fig. 7 we present theruntime as funtion of the number of ustomers as well as the respetive standard deviation.On the X axis there are the groups of ustomers suh as 1 orresponds to [0−100] ustomers,2 to [101− 200] et.The size of the error bar is indiating the variability of the runtime depending on thenumber of brokers in the market and at the same time the stohasti nature of the model. Thenumber of brokers are seleted based on realisti riteria. In most of the existing Europeanand US energy markets the maximum number of energy retailers 2 (brokers) is 6 [? ℄. Soour assumptions about the brokers satis�es the realisti onditions.2http://www.esosa.sa.gov.au/onsumer-information/energy-retailers.aspx
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Figure 7: Runtime as a relation to the number of ustomers in the energy market, fordi�erent number of brokers [1-15℄. The lusters of ustomers indiate ustomer groupingsuh as [0-100℄, [101-200℄,...[901-1000℄.4.2 Degree of TruthfulnessThe appliation of the VCG mehanism for the optimal payment alloation, provides inen-tives for ensuring the truthfulness with respet to the delaration of the ost and revenuefuntion. Possible untruthful delaration from the broker's side in order to make largerpro�t, leads to pro�t redution instead of inrease.In the following senario we onsider a simulation environment with 50 onsumers and
50 produers and 3 brokers. Let the 3rd broker be untruthful regarding the ost funtion(in this ase pro�t) for regulating upwards the ontrollable apaity available in the broker'sportfolio. All the other settings and parameters remain onstant during this senario (i.ethe onsumption, the prodution, eah broker's imbalane and the pro�t funtions of therest of the brokers remain unhanged). The truthfulness of the broker's pro�t funtion isindiated as a perentage on the real pro�t funtion. The net imbalane in the market forthe examined timeslot is ∑iǫN xi = 657.94 so the ontrollable apaities for downwards reg-ulation will be used. More spei�ally, the real data related to this example and the datain�uened by the untruthful delaration are depited on the Table 4. It is observed thateven when the broker delares "double" ost as the atual ost, the pro�t is less than in17



Table 4: Payment alloation to the ontrollable apaities aording to VCG mehanism,with and without being a�eted by untruthful delaration from the 3rd broker.Broker Revenue pi Revenue Pro�t pi Pro�tfuntion($/W ) ($) ($) funtion($) ($) ($)1 6.03 · 3
√
x1 − 105 10.79 28.25 6.03 · 3

√
x1 − 105 9.88 22.692 3.67 · 3

√
x2 − 57 5.68 12.67 3.67 · 3

√
x2 − 57 4.90 10.413 5.86 · 3

√
x3 − 26 6.71 26.95 11.72 · 3

√
x3 − 26 19.95 24.18ase of truthful delaration. In Fig. 8 is presented the redution of the pro�t against thefration untruthfulFunction/truthfulFunction. As we an see the pro�t under untruthfuldelaration reahes the maximum value only at one point whih is for truthful ost delara-tion. Additionally, the urve is not symmetri in the orresponding ases of equal redutionor inrease in the perentage of the truthfulness. That is beause the pro�t is given by theequation profit = revenue−cost. So the revenue and ost for the 3rd broker who is delaring"fake" funtion are hanging with unequal rates and as a onsequene their di�erene is mod-i�ed aordingly. From this graph we derive the onlusion that if the broker deides to over-exerise the ontrollable apaities available (untruthfulFunction/truthfulFunction > 1),the redution in the expeted pro�t will not be as muh the same as the redution in thepro�t resulting from under-exerise (untruthfulFunction/truthfulFunction < 1). Thisresult, is bene�ial for the brokering strategies, sine the a priori knowledge of the impatthat the over-exerise or under-exerise may have on the ost, allows the broker to be more�exible in the deisions he is fored to make in real time. Eah attempt from the broker'sside to predit this impat, is a omplex mahine learning task that neessities auratepreditions [11℄. Additionally, these predition tasks may add omputational load and thedeision may not be feasible in the tight time onstraints of the simulation environment.Finally, this result proves that there is signi�ant loss for the individual that deviates fromthe truthful behavior, while theory only proves that there is no gain.
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Profit for untruthful declarationFigure 8: Pro�t for the 3rd broker aording to degree of truthfulness.5 Related Work5.1 Residential Load Curve SimulationModeling the ustomer in high preision is key fator for an aurate balaning approahin the energy market. As the preise ustomer modeling, redues the extent of unertainty,allows for e�ient balaning algorithms that are apable of preventing unlikely energy short-ages. With respet to the modeling domesti load urves, various approahes have beenproposed among the literature. The authors in [13℄ present a bottom-up modeling approahwhere saturation information for the domesti applianes are olleted from households inFinland. They propose prioritization for the applianes, so as to ahieve Demand Side Man-agement (DSM ) taking into aount eah devie's priority. Nevertheless, no sophistiatedDSM is applied in order to resolve imbalanes. Furthermore, in [18℄ a stohasti approahbased on Markov-hain models is proposed in order to reate domesti load urves, but theauthors do not model the applianes available in the household. They just de�ne the ou-pany pro�les and based on them reate the load urves. In [10℄ a method for generatingdomesti and Commerial & Industrial load urves based on onsumption data olletedfrom utilities in Sao Paolo, Brazil, is proposed. They perform statistial analysis to onludeto some representative load urves, as opposed to bottom-up approah that we use. The19



authors in [8℄ present a bottom-up household modeling approah and apply demand responseprogrammes. They use stylized data to verify their results, whereas we use real-word datato evaluate the load urves with 83% degree of �t and made the model more dynami in thesense of ativities interdependenies and shifting to the next timeslot. Our proposed bal-aning approah onstraints the load shifting up until the next timeslot, in order to preventhuge avalanhe e�ets from ontinuous load shifting. Overall our modeling approah om-bines both appliane information and all the ustomer types from related works mentioned,so it is more omplete and representative of the atual ustomer's behavior.5.2 Balaning in the energy marketBalaning in the energy market is widely investigated, as to develop suessful balaningstrategies and eliminate imbalanes between supply and demand. In [7℄ the authors assumethat the balaning transations take plae only in the reserve market (following the Germanmarket prototype). The balaning has two steps: �rstly reserve apaity is proured, andseondly in ase of imbalane the balaning energy is delivered, based on the reserve apaity.Aording to that, only a two-part tari� ould be e�ient. The �rst part delaring the priefor the apaity and the seond part the prie for the energy delivered. The authors in[9℄ propose a balaning mehanism based on bidding for reserve apaities. In their bids,generators inlude the opportunity ost of withholding reserve apaities. During the day-ahead aution the proposed mehanism operates as a one-shot aution, for whih the SystemOperator ollets bids for every hour of the next day. During the real-time phase for eah hourof the following day, the balaning requirements are announed, and the System Operatoromputes an optimal alloation to settle the balaning demand. The authors in [14℄ onsiderthree balaning elements. First the program responsibility where exist both produers andonsumers and inform TenneT (system operator) about their demand and supply. Seondthe single-buyer market for regulation and third the reserve power where TenneT tries toresolve unexpeted imbalanes. 20



6 Conlusions and Future WorkThe presented balaning approah is deployed within the ontext of Power Trading AgentCompetition [12℄. It resolves imbalanes for the urrent timeslot, assuming the existene ofontrollable apaities on the ustomers' side.The proposed mehanism suggests load shiftingfor the next timeslot, sine the apaity that regulated in the urrent timeslot, shows up inthe next timeslot. We have implemented ustomer models using the bottom-up approahand evaluated them against real-world onsumption data, obtaining a high degree of �t. Wehave validated the appliability of the proposed algorithm in pratie and we have veri�edthe salability of the algorithm to thousands of ustomers that may di�erentiate on theonsumption features. Finally, we proved that the proposed balaning mehanism providesinentives to the ustomers for truthful ost delaration. Every deviation from the truthfulost value, leads to pro�t redution for the orresponding broker. Future extensions ofthe urrent work, is to model the ustomer in the devie level and make use of higherresolution ost funtions that will re�et the exat ost of eah ontrollable apaity inpartiular (i.e. di�erent ost for heat pump, Air Conditioning et). An additional extensionis to de�ne the exat ost and pro�t funtions re�eting the spei� ontrollable apaitiesavailability in the broker's portfolio for every timeslot. This will make the system moredynami, as the funtions will vary among the di�erent timeslots as the broker's portfoliowill be hanging. With respet to the balaning approah, we are planning to extend themehanism in resolving the imbalanes aross timeslots. Finally, we will extend the ustomermodels both to reating the produer models and to embedding in the onsumer produtionfeatures (suh as PEVs, photovoltais et).Referenes[1℄ Massoud Amin and Brue Wollenberg. Toward a smart grid: Power delivery for the21st entury. IEEE Power & Energy Magazine, 3(5):34�41, 2005.21



[2℄ Martin Bihler, Alok Gupta, and Wolfgang Ketter. Designing smart markets. Informa-tion Systems Researh, 21(4):688�699, 2010.[3℄ Severin Borenstein. The trouble with eletriity markets: Understanding California'srestruturing disaster. Journal of Eonomi Perspetives, 16(1):191�211, 2002.[4℄ Severin Borenstein, James B. Bushnell, and Frank A. Wolak. Measuring market inef-�ienies in California's restrutured wholesale eletriity market. The Amerian Eo-nomi Review, 92(5):1376�1405, 2002.[5℄ S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,2004.[6℄ Mathijs de Weerdt, Wolfgang Ketter, and John Collins. A theoretial analysis of pri-ing mehanisms and broker's deisions for real-time balaning in sustainable regionaleletriity markets. In Conferene on Information Systems and Tehnology, pages 1�17,Charlotte, November 2011.[7℄ Kai Flinkerbush. A more e�ient prourement mehanism for reserve apaity in thegerman market for balaning power. CAWM Disussion Papers 52, Center of AppliedEonomi Researh Mï¾÷nster (CAWM), University of Mï¾÷nster, 2011.[8℄ Sebastian Gottwalt, Wolfgang Ketter, Carsten Blok, John Collins, and Christof Wein-hardt. Demand side management - a simulation of household behavior under variablepries. Energy Poliy, 39:8163�8174, 2011.[9℄ Niolas Höning, Han Noot, and Han La Poutré. Integrating power and reserve tradein eletriity networks. In AAMAS '11: Proeedings of the tenth international jointonferene on Autonomous Agents and Multiagent Systems, 2011.[10℄ J.A. Jardini, C.M.V. Tahan, MR Gouvea, S.U. Ahn, and FM Figueiredo. Daily load pro-
22



�les for residential, ommerial and industrial low voltage onsumers. Power Delivery,IEEE Transations on, 15(1):375�380, 2000.[11℄ Wolfgang Ketter, John Collins, Maria Gini, Alok Gupta, and Paul Shrater. Detetingand foreasting eonomi regimes in multi-agent automated exhanges. Deision SupportSystems, 47(4):307�318, 2009.[12℄ Wolfgang Ketter, John Collins, Prashant Reddy, Christoph Flath, and Mathijsde Weerdt. The power trading agent ompetition. Tehnial Report ERS-2011-027-LIS, RSM Erasmus University, Rotterdam, The Netherlands, 2011.[13℄ J.V. Paatero and P.D. Lund. A model for generating household eletriity load pro�les.International Journal of Energy Researh, 30(5):273�290, 2006.[14℄ Van der Veen Reinier and De Vries Laurens. The impat of mirogeneration upon theduth balaning market. Energy Poliy, 37(10):2788�2797, 2009.[15℄ JP Ross and A. Meier. Whole-house measurements of standby power onsumption,2006.[16℄ Klaus Skytte. The regulating power market on the Nordi power exhange Nord Pool:An eonometri analysis. Energy Eonomis, 21(4):295�308, 1999.[17℄ E. Sortomme and MA El-Sharkawi. Optimal power �ow for a system of mirogrids withontrollable loads and battery storage. In Power Systems Conferene and Exposition,2009. PSCE'09. IEEE/PES, pages 1�5. IEEE, 2009.[18℄ J. Widén and E. Wakelgard. A high-resolution stohasti model of domesti ativitypatterns and eletriity demand. Applied Energy, 87(6):1880�1892, 2010.
23


