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Abstract

The decentralized and deregulated design of the Smart Grid necessitates a new
approach to the grid balancing problem. In this paper we implement dynamic residential
customer models validated by real-world data, and impose a balancing mechanism that
uses load shifting to reduce the need to adjust power production through top-down
control. Furthermore, we show that our proposed mechanism is scalable to thousands
of customers. Finally, we explore the interaction between retail energy brokers and
their customers and examine the extent to which truthful declaration of the cost of
curtailment can influence the profitability of brokers. The a priori determination of the
relationship between cost declaration and profitability is a complex machine learning
problem for the broker. Thus, being able to know in advance what impact the specific

deviation will have, is crucial for designing broker decision strategies.



1 Introduction

A number of factors are converging to fundamentally change the structure of energy mar-
kets, including the increasing prices and environmental degradation associated with fossil
fuels and nuclear energy, the increasing availability of renewable energy sources such as wind
and solar, and the expected transition to electric vehicles. One response to these pressures
is the ongoing transition from regulated monopolies to liberalized markets in the electricity
sector, but the 2000-2001 crisis in the California energy market |4, 3| shows what can go
wrong when poorly designed markets are introduced without adequate analysis. Another is
the various “smart grid” initiatives |1], including “smart” meters that can support dynamic
pricing, and demand-side management technology that can remotely manage loads in indi-
vidual households and businesses. Market liberalization at both wholesale and retail levels
is also an important element, because it allows for innovations that cannot realistically arise
in a regulated monopoly environment, and, at least in theory, should do a better job of
allocating the output of variable-output renewable power sources to customers.

Two features distinguish retail electricity markets from most other types of markets: (1)
the need for continuous balance between supply and demand, and (2) the fact that all players
share the distribution infrastructure, and electricity is a pure commodity product. The result
is that without an effective mechanism design for balancing, individual retail brokers can “free
ride” by selling power without having purchased an equal amount of power. This problem
is relatively easy to solve in an environment where virtually all power is produced centrally
by baseload facilities such as hydro and fossil fuel plants, and where the retail customers
are almost exclusively consumers, and not producers of power [16]. The problem becomes
much more complex as the proportion of variable-output renewable sources increases, and
as distributed production and storage facilities are introduced into the retail grid.

The liberalization of energy markets is expected to lead to the appearance of many retail
energy providers, brokers, that have an active role in the energy transactions [2]. Their main

goal is to maximize profit, by offering appealing energy tariffs to prospective customers to



build a robust customer portfolio, and supplying them by purchasing power in the wholesale
market. The Power Trading Agent Competition' [12] is a realistic competitive simulation
that allows brokers with various trading strategies to compete in a market environment
equipped with smart meters, basic demand-side management capabilities, and a variety of
baseload and renewable energy sources. Thus, this simulation environment is of special
interest to study the design and application of balancing mechanisms.

In previous work, we have developed a mechanism for market-based balancing [6] and
shown that it has desirable properties, such as incentive compatibility with respect to the
cost for brokers to exercise the demand-side management capacities of their customers. Be-
cause these results are only theoretical, it is important to evaluate the proposed balancing
mechanism in realistic conditions. Reliable results depend on realistic customer modeling.
Additionally, the scalability of the balancing algorithm needs to be evaluated in a realistic
context, to prove that could be applicable in the real energy grid.

We study the balancing problem in the liberalized energy market in the light of the
optimal payment allocation in each point of time, making use of demand-side management or
controllable capacities (such as thermal storage facilities) embedded in the customer models.
Our main objective is to test the incentive compatibility and the scalability of the proposed
balancing mechanism in an energy market with customers owning controllable capacities.

This paper is organized as follows. In Section 2 we provide the description of the sim-
ulation environment that serves as a validation testbed for our mechanism. In Section 3
we describe the customer modeling approach followed to create realistic customers and in
Section 4 the proposed algorithm is tested with respect to scalability and truthfulness. In
Section 5 is presented a review of related literature. We conclude this paper with further

extensions related to both the customer modeling and the balancing mechanism.

thttp:/ /www.powertac.org



2 Simulation environment

The simulation environment [12| provides a realistic representation of a retail tariff market
for electric power. The tariff market allows brokers to publish tariffs for selling or buying
energy and attract both consumers and producers. Within this context, the involved parties
consumers, producers, and brokers act selfishly in order to maximize their profit or utility
through transactions in this market. An ideal portfolio of tariff customers will tend to con-
sume power when it is inexpensive on the wholesale market, and produce power at times
when wholesale prices are high. Any imbalance is resolved by the Distribution Utility, (DU),
which is typically a regulated monopoly that owns and operates the distribution infrastruc-
ture and is ultimately responsible for balancing its grid. We assume predefined time intervals
for the simulation (timeslots), t € [0,95], which represent 15 min of real time. So, a day is
being represented by 24 - 4 timeslots.

The DU has two available technical mechanisms to achieve balance: (1) it may purchase
or sell power through the wholesale “regulating” or “ancillary services” market, or (2) it
may exercise contracted controllable capacities |17] that are offered by individual brokers.
Controllable capacities are those that can be regulated "upwards" or "downwards" to con-
sume overproduced energy or reduce overconsumption, for balancing purposes. Household
examples include water heaters, heat pumps or CHPs that can be remotely manipulated for
regulatory actions. Other controllable capacities may be dishwashers or washing machines
that are pre-loaded and their starting timeslot is chosen according to the balancing needs of

the DU.

2.1 Customers

The customers are composed by different types of household customers varying from em-
ployees, students to retired persons, children, shift workers, unemployed etc., represented

accordingly in the simulation environment. Each household is equipped with a set of house-



hold appliances and the persons living in this household perform various domestic activities,
using household appliances. People may live in single apartments or family houses. Con-
sequently, for each consumer n € N, a specific energy demand d,,; is calculated for every
timeslot ¢, derived by the activities performed in the household during this specific timeslot,
as described in details in Section 3. Additionally, each household has a predefined maximum
amount of controllable capacities. This amount includes capacities that can be manipu-
lated by the DU in order to cover any potential overproduction or reduce any potential
overconsumption. More specifically, on the customers’s side domestic appliances such as
the dishwasher, the washing machine, the heating pump etc are some of the controllable
capacities available for balancing.

The customers interact in the tariff market with the brokers, and their controllable ca-
pacities become part of their portfolio. More specifically, the brokers are publishing energy
tariffs to attract customers, cover their energy demand and make profit through these trans-
actions. The customers that are contracted to a specific broker, compose the broker’s total
demand, as an aggregation of all the particular demanded amounts of energy, > - B, dp ¢
Furthermore, the aggregation of each customer’s controllable capacities comprise the bro-
ker’s total controllable capacities that can be regulated either downwards in order to balance
potential overproduction or upwards to balance overconsumption. We denote those control-
lable capacities C';” for each broker B; and symbolically assume that it has negative values,
(OIS (—00,0) for downwards regulation. Respectively, the broker’s total controllable capac-
ities for upwards regulation (in other words reduce consumption) are symbolically denoted

as C € (0, +00).

2.2 Producers

Large-scale producers are the Generation Companies, GenCos, attempting to supply the
energy market with the amount needed in order to prevent any shortage periods. Specifically,

they are producing for each timeslot, ¢, amounts of energy G, ; which vary among the different



GenCos, k € N. They interact with brokers, in respond to their tariff offers, so as to benefit
from being part of their portfolio. The brokers’s objective is to attract as many producers as
they need both to make profit and maintain a balanced portfolio. To this end, the aggregation
of the contracted GenCos’ production composes the broker’s total production, Zkij Gt
This production for each GenCo is considered constant with no variation over the timeslots.
This choice is supporting our main purpose, which is the thorough investigation of customer’s

demand and use of controllable capacities to the balancing direction.

2.3 Brokers

The brokers Bj, act as intermediary parties in the energy market having transactions with
both consumers and producers. Their aim is to make profit through those transaction,
maintaining at the same time a balanced portfolio. More specifically, for each timeslot ¢, the

net imbalance for each broker B; is:

Ttj = Z Gk,t - Z dn,t (1)

k‘EBj nEBj

and can be positive z;; > 0, overproduction and negative x;; < 0, overconsumption. The
brokers have to declare this net imbalance to the DU. An example of broker’s total contracted
supply and demand is presented in Fig. 1 (the generated demand and supply curves come
from the customer models described in section 3). The distance between the two curves in
each timeslot represents the broker’s imbalance for the examined timeslot.

Additional feature of the brokers’ portfolio is the controllable capacity that can be reg-
ulated either upwards or downwards, ¢; € (C} ,Cj). This controllable capacity range is
also reported to DU, in order to make use of the amount needed to balance demand and
supply. In combination with their controllable capacities the brokers, declare costs for up-
wards regulation (production) and profits for downwards regulation (consumption). In the

first case the DU pays to the brokers the cost for producing this extra capacity for balance’s
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Figure 1: Broker’s Contracted Supply and Demand for each time slot in a 24h horizon.

sake. In the second case the brokers pay the DU for the revenue they make for having their
customers consume this extra energy amount. In both cases the main objective for DU is
to minimize the payments (from the DU’s side) which in the first case are negative and the
second case are positive. More specifically, in each timeslot the broker declares the amount
of controllable capacity that is willing to regulate upwards or downwards accompanied with
the corresponding cost and revenue functions. The DU aggregates those declarations and
makes use of the amounts that minimize both the cost payments (positive) and the profit
payments (negative). In case of the cost and profit functions described below, the problem
of the optimal payment allocation is a convex-optimization problem.

In the presented simulation the brokers use quadratic cumulative cost functions in or-
der to determine the cost on the controllable capacity units. The quadratic cost function
assumption is based on the fact that for each extra controllable capacity needed for the bal-
ancing, the broker needs to pay more to the corresponding customer, in order to make this
unit available to the balancing mechanism. Thus, the quadratic function is a good approx-
imation of this non-linear relationship between the controllable capacity units and the cost
that the broker has to pay, to make them available for balancing. The general cost function

form used in our approach is as follows:



costypi(cj) =a-c;* +b-c;+e (2)

with @ > 0 and e > 0 in order to have monotonically increasing marginal cost and to
satisfy the constraint that for ¢; ~ 0 we have cost,, ;(c;) > 0. The graph in Fig. 2 depicts a
variety of cumulative cost functions corresponding to the brokers in the market. We choose
a starting cost for the controllable capacity, so we must always have e # 0. As far as the

cumulative revenue function is concerned, the brokers have functions of the following form:

reventeqoum, ;i(¢j) =g - v/¢; —d (3)

with ¢ > 0 and d > 0 in order to have monotonically decreasing marginal profit. The
reason for this choice is described by the idea that no, the broker has t be paid by the customer
for every extra controllable unit that the customer can consume (downwards regulation).
Thus, for each extra unit, the customer has to pay less to the broker, since the broker needs
this downward regulation to have a balanced portfolio, while the customer may not need to
consume this extra unit. Common example is the case that the customer may turn his/her
heating pump on for consuming the extra energy. With this revenue function, we assure both
that the customer will consume only in the case that he/she needs to consume (otherwise,
there is no reason to pay the broker), and at the same time the broker, has his portfolio
surplus consumed, avoiding the high imbalance penalties by the DU. The graph in Fig. 3
depicts a variety of cumulative revenue functions corresponding to the brokers in the market.

The revenues are denotes with negative values, since those revenue amounts need to be paid

by the broker to the DU.

2.4 Distribution Utility

The Distribution Utility acts as a market operator that is responsible for maintaining the

balance between the trends of demand and supply. On every timeslot, the brokers report
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to the DU the net imbalance in their portfolio, z;;. The DU in return imposes payments or
rewards that correspond to controllable capacities used for the balancing procedure. This
allocation must be optimal and provide credits to the brokers that participate. The payment

allocation mechanism is described in Section 4.



3 Customer Modeling

3.1 Residential Model Description

A realistic customer model will provide accurate validation of the proposed balancing mech-
anism. Thus, we create implement various load profiles based on statistical data referring to
the appliance availability, the residents’ schedule, as well as appliances’ consumption data
over the day. The saturation data for each appliance determine the percentage of the pop-
ulation that have possession of each appliance. These data come from the "Bundesverband
der Energie und Wasserwirtschaft (2009)" as presented in [8]. Fig. 4 depicts the modeling
process as followed to create the individual customer models. The creation of each individual
customer is a highly dynamic process, as each household is created in a stochastic way with
various features and activities interdependencies. In Fig. 5 are presented the appliances

included and the respective saturation.

Determine Determine
HO Profile working household Saturation Data
type appliances

peterqwme Appliances' data
appliance's cycle

Household Load
Curve

Determine
Occupancy
profile

Figure 4: Residential load curve creation.

Having specified the appliance-set available in each household, the occupancy profile
should be defined. In order to specify the occupancy of each household we assume the H
profile as presented in [8|. According to Hj profile the population is divided to working

people, students, etc. who are present in the household during pre-specified periods before
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Figure 5: Appliance saturation (source Hy profile).

Table 1: Hy profile and the share of each group.

Working type Share (%) Start work (hour of the day) Absence for work (hours)
worker, student 53 [7 — 8.30] 8
unemployed, retired 40 - -
shift worker 7 random 8

or after their absence for working activities, to retired, unemployed, etc. who are mostly
present in the household and shift-workers who are absent from household during unspecified
periods over the day. Table 1 is presenting the share of each group in the whole population.
For the working people we assume that they start working in the interval [7 — 8.30], work
for 8 hours and return to their domestic activities during the interval [17 — 18.30]. The
unemployed /retired people are assumed to wake up in the morning in the same interval
[7 — 8.30] and spend most of their time in domestic activities.

In order to create the residential load curve corresponding to each household, the ap-
pliances functionality has to be divided into cycles lasting one timeslot (15 mins) and the
starting points of the different activities to be allocated according to the customer’s presence
or absence. At this point a logical sequence of activities is followed and the different level of
activities dependencies is determined based on the people’s occupancy. During customer’s
absence or over night we assume consumption from appliances that function independently
from human’s presence (i.e washing machine that has been loaded by the resident, chargers

and other electronic devices) and standby consumption from the appliances available in each
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Table 2: Appliances data referring to the power consumption and stand-by consumption,
total functionality duration and daily probability of occurrence. Data for power consumption
and cycles 8], for standby consumption [15]|, and probability of occurrence |13].

Appliance Consumption Stand-by Duration  Probability
(W) Consumpt.(W)  (min)  of Occurrence
Washing machine 600 6 105 0.32
Dryer 1410 2.2 105 0.29
Refrigerator 140 1.7 15 1
Freezer 106 1.7 15 1
Stove and Oven 1840 2.2 30 0.585
Electronic Devices 150 67 90 1
Lighting Installations 350 0 120 1
Circulation Pump 90 2.2 975 0.3
Dishwasher 530 1.3 135 1
Instantaneous water heater 12000 0 15 0.3

household. The data used for each appliance are depicted in Table 2.

In order to determine the starting point of each activity including specific appliances, we
take into account the probabilities of occurrence in a day [13] as presented in Table 2. Those
probabilities are calculated as a weighted average from the probabilities of occurrence during
the weekdays and the weekends. For the electronic devices the average of all those devices’
probabilities is used (TV, PC, stereo etc.). Consequently, according to the probability of
occurrence, the saturation and the working type of each customer we create individual load
profiles, which vary on the appliances available, the working hours etc. The presented model
is highly dynamic as it includes all kind of activities in a regular household and takes into
account, the interdependencies between them. Additionally, depending on the number of
customers residing in a specific household, the consumption varies as there may be overlap
in each person’s activities. Using the current model, we are able to simulate large populations

of residential customers, including all the particular residential consumption characteristics.
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3.1.1 Customer modeling verification

The proposed model is being tested against real-world data in order to confirm its accuracy.
The data available are household consumption measurements referring to time slots of 15
minutes for a week’s time horizon and are obtained in cooperation with European Distribu-
tion Utility. They are coming from 24 households in the Netherlands and they are used to
generate an aggregated profile which is tested against the generated profile from our model.
Those data are consumption measurements, obtained before any balancing actions. The sec-
ond profile is generated for 24 load curves picked randomly from our simulation. Those 24
load curves are aggregating data from consumption over a week’s horizon. The comparison
in the two profiles is presented in the Fig. 6. We use Pearson’s coefficient » = 83% as a
goodness of fit for the two curves |? |. This means that the aggregation of 24 weekly load
curves is 83% correlated with the respective aggregation of 24 weekly load curves picked

randomly from the real consumption data, which indicates a very high fit.
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Figure 6: Generated load curve against load curve from real data.

4 Validation of the Balancing Algorithm

Within the context of the simulation environment presented in Section 2 we validate the

balancing mechanism proposed in [6]. More specifically in this balancing mechanism the
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VCG |6] payment allocation is used, where each broker pays "opportunity cost" that its
presence introduces to all the other brokers. If the assumption of no real-time matching of
the brokers’ imbalances holds (the brokers are not allowed to counterbalance each other’s
imbalance), the DU is responsible for making use of the controllable capacities available in
each broker’s portfolio to achieve the optimal combination in order to have minimal cost.
According to the VCG mechanism (defined on the minimal cost and not on the maximum

well fare) the payments to or from i*h broker in the simulation are:

pi(0) = — Z 6:" - cost;(657) + Z 8" - cost; () (4)

J#i J#

where ¢ is the vector with the optimal capacity allocation and 4, ¥ is the vector with the
optimal capacity allocation if we exclude the i*" broker, i.e. the controllable capacity for this
broker is considered 0. For extended proof and explanation of the mechanism see [6, 12|. The
cost function for the corresponding controllable capacities is denoted by cost;(-). If x; each
broker’s imbalance, we have ). \ z; < 0 in case of over consumption and ), z; > 0 for
over production. In the first case, the controllable capacities (CC) for upward regulation are
used (CC > 0) and in the second case the controllable capacities for downward regulation
are used (C'C' < 0). In both cases, if we assume cost and revenue functions as described in
Section 2.3, the problem of defining the optimal capacity and payment allocation is a convex
optimization problem [5] and can be solved by various available methods (eg. interior-point
methods etc).

The proposed balancing mechanism applies load shifting in the sense that in order to
resolve the imbalances in the current timeslot, the loads controlled, are shifted to the next
timeslot. Thus, the Demand Side Management (DSM) technique used, avoids avalanche
effects that occur from long term load shifting or postponing.

Consider the optimal payment allocation as presented in Table 3. In this scenario we have

a total imbalance Y,y 2; = —9.6 - 10" (overconsumption), so the controllable capacities for
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Table 3: Payment allocation for the controllable capacities according to VCG mechanism

Broker  Surplus Control. Cost Di Capacity Used
(W) Capacity (W) (3) () (W)
1 —1.24-10% 4.76 - 10* 3.62x2 + 8.86x; +4.69 | —0.36 - 10° 0.69 - 10*
2 —2.01-10% 8.98 - 10* 0.9872 + 8.28x5 + 1.29 | —1.51 - 10° 2.55 - 10*
3 —1.81-10% 5.11-104 1.24:8?;, + 8.60x3 +2.64 | —1.14 - 10° 2.02-10%
4 —3.43-10% 4.27 - 104 5.84x2 + 0.22x4 + 0.05 | —0.22 - 10° 0.43 - 10*
5 —1.17-10% 6.64 - 104 0.63z% + 1.46x5 + 0.61 | —2.69 - 10° 3.97 - 104

upward regulation are used. Here we assume 5 brokers in the simulation and 50 consumers
and 50 producers. Each broker’s portfolio imbalance is depicted in the column Surplus.
Further, each broker’s controllable capacity for upward regulation is presented in the column
Control. Capacity. For each broker, the cost function for the controllable capacity is defined
in the column Cost. We assume the cost functions cost(c;) = a - c? + b - ¢; + e satisfying
the constraints presented in Section 2.3. With ¢; 4, is denoted the controllable capacity
that each broker makes available to the DU for balancing and x the total imbalance in the
market for the current timeslot. In order to calculate the optimal vector  with the capacity

allocation, we conclude to the minimization problem:

minimize )y .y cost(c;)
subject to 0 < z; < Cimax (5)
and DienTi =1

which is a quadratic optimization problem. N is the number of the brokers in the market.
In the case that the cost functions on the broker’s side are in the form described in Section
2.3, the problem is convex and various approaches can be used in order to reach to a solution

(interior-point etc.).

4.1 Scalability Analysis

A crucial factor for the applicability of the balancing algorithm is the scalability. Under the

assumption that the cost and profit functions, on the broker’s side, have the form described
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in Section 2.3, the optimization problem for the payment allocation is convex [57 |. In Fig.
7 the runtime of our algorithm is presented in relation to the number of customers in the
simulation. For simplicity’s sake, but without loss of generality, we assume equal number of
producers and consumers in the energy market ([1-500] consumers, [1-500] producers). The
brokers in this experiment are varying in the range of [1-15]. The presented runtime for every
number of customers includes the time needed for calculating the customer’s consumption at
the examined timeslot, the time needed for defining the optimal capacity combination and
the runtime spent for payment allocation. The increase of the customers does not lead to a
strictly linear increase of the runtime, since for each group of customers the appliances, the
persons, the schedules vary. As a result, the controllable capacities are different. This leads to
different optimization problems for every number of customers (consumers and producers),
which are differentiated on the runtime for defining the optimal solution. Another factor
which affects the runtime is that the optimization differs in case of surplus or shortage. In
case of surplus the DU makes use of the controllable capacities regulated downwards and
minimizes the payments over the function revenuegoun, ;(¢;) = g - /c; — d while in case of
shortage the upwards regulated controllable capacities are used and the optimization problem
is referring to quadratic functions costy, ;(¢;) = a-c¢;* + b+ c¢; +e. In Fig. 7 we present the
runtime as function of the number of customers as well as the respective standard deviation.
On the X axis there are the groups of customers such as 1 corresponds to [0 —100] customers,
2 to [101 — 200] etc.

The size of the error bar is indicating the variability of the runtime depending on the
number of brokers in the market and at the same time the stochastic nature of the model. The
number of brokers are selected based on realistic criteria. In most of the existing European
and US energy markets the maximum number of energy retailers ? (brokers) is 6 |? |. So

our assumptions about the brokers satisfies the realistic conditions.

http:/ /www.escosa.sa.gov.au/consumer-information /energy-retailers.aspx
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Figure 7: Runtime as a relation to the number of customers in the energy market, for
different number of brokers [1-15]. The clusters of customers indicate customer grouping
such as [0-100], [101-200],...[901-1000].

4.2 Degree of Truthfulness

The application of the VCG mechanism for the optimal payment allocation, provides incen-
tives for ensuring the truthfulness with respect to the declaration of the cost and revenue
function. Possible untruthful declaration from the broker’s side in order to make larger
profit, leads to profit reduction instead of increase.

In the following scenario we consider a simulation environment with 50 consumers and
50 producers and 3 brokers. Let the 3"¢ broker be untruthful regarding the cost function
(in this case profit) for regulating upwards the controllable capacity available in the broker’s
portfolio. All the other settings and parameters remain constant during this scenario (i.e
the consumption, the production, each broker’s imbalance and the profit functions of the
rest of the brokers remain unchanged). The truthfulness of the broker’s profit function is
indicated as a percentage on the real profit function. The net imbalance in the market for
the examined timeslot is ) .\ x; = 657.94 so the controllable capacities for downwards reg-
ulation will be used. More specifically, the real data related to this example and the data
influenced by the untruthful declaration are depicted on the Table 4. It is observed that

even when the broker declares "double" cost as the actual cost, the profit is less than in
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Table 4: Payment allocation to the controllable capacities according to VCG mechanism,
with and without being affected by untruthful declaration from the 3" broker.

Broker Revenue Di Revenue | Profit Di Profit
function($/W)  ($) (%) function($) (%) (%)

1 6.03 - /21 — 105 10.79 28.25 6.03 - /21 — 105 9.88  22.69

3.67-y/xea — 57 5.68  12.67 3.67 - /xy — BT 490 10.41
3 5.86 - vx3—26 6.71  26.95 11.72 - /x5 — 26 19.95 24.18

(N

case of truthful declaration. In Fig. 8 is presented the reduction of the profit against the
fraction untruth ful Function/truth ful Function. As we can see the profit under untruthful
declaration reaches the maximum value only at one point which is for truthful cost declara-
tion. Additionally, the curve is not symmetric in the corresponding cases of equal reduction
or increase in the percentage of the truthfulness. That is because the profit is given by the
equation profit = revenue—cost. So the revenue and cost for the 3rd broker who is declaring
"fake" function are changing with unequal rates and as a consequence their difference is mod-
ified accordingly. From this graph we derive the conclusion that if the broker decides to over-
exercise the controllable capacities available (untruth ful Function/truth ful Function > 1),
the reduction in the expected profit will not be as much the same as the reduction in the
profit resulting from under-exercise (untruthful Function/truthful Function < 1). This
result, is beneficial for the brokering strategies, since the a priori knowledge of the impact
that the over-exercise or under-exercise may have on the cost, allows the broker to be more
flexible in the decisions he is forced to make in real time. Each attempt from the broker’s
side to predict this impact, is a complex machine learning task that necessities accurate
predictions [11]. Additionally, these prediction tasks may add computational load and the
decision may not be feasible in the tight time constraints of the simulation environment.
Finally, this result proves that there is significant loss for the individual that deviates from

the truthful behavior, while theory only proves that there is no gain.

18



18 ‘ -
a

J

J

0

16 —

mmm Profit for truthful declaration
=@ ' Profit for untruthful declaration |7

»
0
0
a
g
b

1 1 1 1 1 1 1 1 1 1
02 04 06 08 16 18 2

1 12 14
Untruthful Profit function/ Truthful Profit function
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5 Related Work

5.1 Residential Load Curve Simulation

Modeling the customer in high precision is key factor for an accurate balancing approach
in the energy market. As the precise customer modeling, reduces the extent of uncertainty,
allows for efficient balancing algorithms that are capable of preventing unlikely energy short-
ages. With respect to the modeling domestic load curves, various approaches have been
proposed among the literature. The authors in [13| present a bottom-up modeling approach
where saturation information for the domestic appliances are collected from households in
Finland. They propose prioritization for the appliances, so as to achieve Demand Side Man-
agement (DSM) taking into account each device’s priority. Nevertheless, no sophisticated
DSM is applied in order to resolve imbalances. Furthermore, in [18] a stochastic approach
based on Markov-chain models is proposed in order to create domestic load curves, but the
authors do not model the appliances available in the household. They just define the occu-
pancy profiles and based on them create the load curves. In [10] a method for generating
domestic and Commercial & Industrial load curves based on consumption data collected
from utilities in Sao Paolo, Brazil, is proposed. They perform statistical analysis to conclude

to some representative load curves, as opposed to bottom-up approach that we use. The
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authors in [8| present a bottom-up household modeling approach and apply demand response
programmes. They use stylized data to verify their results, whereas we use real-word data
to evaluate the load curves with 83% degree of fit and made the model more dynamic in the
sense of activities interdependencies and shifting to the next timeslot. Our proposed bal-
ancing approach constraints the load shifting up until the next timeslot, in order to prevent
huge avalanche effects from continuous load shifting. Overall our modeling approach com-
bines both appliance information and all the customer types from related works mentioned,

so it is more complete and representative of the actual customer’s behavior.

5.2 Balancing in the energy market

Balancing in the energy market is widely investigated, as to develop successful balancing
strategies and eliminate imbalances between supply and demand. In [7] the authors assume
that the balancing transactions take place only in the reserve market (following the German
market prototype). The balancing has two steps: firstly reserve capacity is procured, and
secondly in case of imbalance the balancing energy is delivered, based on the reserve capacity.
According to that, only a two-part tariff could be efficient. The first part declaring the price
for the capacity and the second part the price for the energy delivered. The authors in
[9] propose a balancing mechanism based on bidding for reserve capacities. In their bids,
generators include the opportunity cost of withholding reserve capacities. During the day-
ahead auction the proposed mechanism operates as a one-shot auction, for which the System
Operator collects bids for every hour of the next day. During the real-time phase for each hour
of the following day, the balancing requirements are announced, and the System Operator
computes an optimal allocation to settle the balancing demand. The authors in [14] consider
three balancing elements. First the program responsibility where exist both producers and
consumers and inform TenneT (system operator) about their demand and supply. Second
the single-buyer market for regulation and third the reserve power where TenneT tries to

resolve unexpected imbalances.
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6 Conclusions and Future Work

The presented balancing approach is deployed within the context of Power Trading Agent
Competition [12]. It resolves imbalances for the current timeslot, assuming the existence of
controllable capacities on the customers’ side.The proposed mechanism suggests load shifting
for the next timeslot, since the capacity that regulated in the current timeslot, shows up in
the next timeslot. We have implemented customer models using the bottom-up approach
and evaluated them against real-world consumption data, obtaining a high degree of fit. We
have validated the applicability of the proposed algorithm in practice and we have verified
the scalability of the algorithm to thousands of customers that may differentiate on the
consumption features. Finally, we proved that the proposed balancing mechanism provides
incentives to the customers for truthful cost declaration. Every deviation from the truthful
cost value, leads to profit reduction for the corresponding broker. Future extensions of
the current work, is to model the customer in the device level and make use of higher
resolution cost functions that will reflect the exact cost of each controllable capacity in
particular (i.e. different cost for heat pump, Air Conditioning etc). An additional extension
is to define the exact cost and profit functions reflecting the specific controllable capacities
availability in the broker’s portfolio for every timeslot. This will make the system more
dynamic, as the functions will vary among the different timeslots as the broker’s portfolio
will be changing. With respect to the balancing approach, we are planning to extend the
mechanism in resolving the imbalances across timeslots. Finally, we will extend the customer
models both to creating the producer models and to embedding in the consumer production

features (such as PEVs, photovoltaics etc).
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