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Abstra
tThe de
entralized and deregulated design of the Smart Grid ne
essitates a newapproa
h to the grid balan
ing problem. In this paper we implement dynami
 residential
ustomer models validated by real-world data, and impose a balan
ing me
hanism thatuses load shifting to redu
e the need to adjust power produ
tion through top-down
ontrol. Furthermore, we show that our proposed me
hanism is s
alable to thousandsof 
ustomers. Finally, we explore the intera
tion between retail energy brokers andtheir 
ustomers and examine the extent to whi
h truthful de
laration of the 
ost of
urtailment 
an in�uen
e the pro�tability of brokers. The a priori determination of therelationship between 
ost de
laration and pro�tability is a 
omplex ma
hine learningproblem for the broker. Thus, being able to know in advan
e what impa
t the spe
i�
deviation will have, is 
ru
ial for designing broker de
ision strategies.1



1 Introdu
tionA number of fa
tors are 
onverging to fundamentally 
hange the stru
ture of energy mar-kets, in
luding the in
reasing pri
es and environmental degradation asso
iated with fossilfuels and nu
lear energy, the in
reasing availability of renewable energy sour
es su
h as windand solar, and the expe
ted transition to ele
tri
 vehi
les. One response to these pressuresis the ongoing transition from regulated monopolies to liberalized markets in the ele
tri
ityse
tor, but the 2000-2001 
risis in the California energy market [4, 3℄ shows what 
an gowrong when poorly designed markets are introdu
ed without adequate analysis. Another isthe various �smart grid� initiatives [1℄, in
luding �smart� meters that 
an support dynami
pri
ing, and demand-side management te
hnology that 
an remotely manage loads in indi-vidual households and businesses. Market liberalization at both wholesale and retail levelsis also an important element, be
ause it allows for innovations that 
annot realisti
ally arisein a regulated monopoly environment, and, at least in theory, should do a better job ofallo
ating the output of variable-output renewable power sour
es to 
ustomers.Two features distinguish retail ele
tri
ity markets from most other types of markets: (1)the need for 
ontinuous balan
e between supply and demand, and (2) the fa
t that all playersshare the distribution infrastru
ture, and ele
tri
ity is a pure 
ommodity produ
t. The resultis that without an e�e
tive me
hanism design for balan
ing, individual retail brokers 
an �freeride� by selling power without having pur
hased an equal amount of power. This problemis relatively easy to solve in an environment where virtually all power is produ
ed 
entrallyby baseload fa
ilities su
h as hydro and fossil fuel plants, and where the retail 
ustomersare almost ex
lusively 
onsumers, and not produ
ers of power [16℄. The problem be
omesmu
h more 
omplex as the proportion of variable-output renewable sour
es in
reases, andas distributed produ
tion and storage fa
ilities are introdu
ed into the retail grid.The liberalization of energy markets is expe
ted to lead to the appearan
e of many retailenergy providers, brokers, that have an a
tive role in the energy transa
tions [2℄. Their maingoal is to maximize pro�t, by o�ering appealing energy tari�s to prospe
tive 
ustomers to2



build a robust 
ustomer portfolio, and supplying them by pur
hasing power in the wholesalemarket. The Power Trading Agent Competition1 [12℄ is a realisti
 
ompetitive simulationthat allows brokers with various trading strategies to 
ompete in a market environmentequipped with smart meters, basi
 demand-side management 
apabilities, and a variety ofbaseload and renewable energy sour
es. Thus, this simulation environment is of spe
ialinterest to study the design and appli
ation of balan
ing me
hanisms.In previous work, we have developed a me
hanism for market-based balan
ing [6℄ andshown that it has desirable properties, su
h as in
entive 
ompatibility with respe
t to the
ost for brokers to exer
ise the demand-side management 
apa
ities of their 
ustomers. Be-
ause these results are only theoreti
al, it is important to evaluate the proposed balan
ingme
hanism in realisti
 
onditions. Reliable results depend on realisti
 
ustomer modeling.Additionally, the s
alability of the balan
ing algorithm needs to be evaluated in a realisti

ontext, to prove that 
ould be appli
able in the real energy grid.We study the balan
ing problem in the liberalized energy market in the light of theoptimal payment allo
ation in ea
h point of time, making use of demand-side management or
ontrollable 
apa
ities (su
h as thermal storage fa
ilities) embedded in the 
ustomer models.Our main obje
tive is to test the in
entive 
ompatibility and the s
alability of the proposedbalan
ing me
hanism in an energy market with 
ustomers owning 
ontrollable 
apa
ities.This paper is organized as follows. In Se
tion 2 we provide the des
ription of the sim-ulation environment that serves as a validation testbed for our me
hanism. In Se
tion 3we des
ribe the 
ustomer modeling approa
h followed to 
reate realisti
 
ustomers and inSe
tion 4 the proposed algorithm is tested with respe
t to s
alability and truthfulness. InSe
tion 5 is presented a review of related literature. We 
on
lude this paper with furtherextensions related to both the 
ustomer modeling and the balan
ing me
hanism.1http://www.powerta
.org
3



2 Simulation environmentThe simulation environment [12℄ provides a realisti
 representation of a retail tari� marketfor ele
tri
 power. The tari� market allows brokers to publish tari�s for selling or buyingenergy and attra
t both 
onsumers and produ
ers. Within this 
ontext, the involved parties
onsumers, produ
ers, and brokers a
t sel�shly in order to maximize their pro�t or utilitythrough transa
tions in this market. An ideal portfolio of tari� 
ustomers will tend to 
on-sume power when it is inexpensive on the wholesale market, and produ
e power at timeswhen wholesale pri
es are high. Any imbalan
e is resolved by the Distribution Utility, (DU),whi
h is typi
ally a regulated monopoly that owns and operates the distribution infrastru
-ture and is ultimately responsible for balan
ing its grid. We assume prede�ned time intervalsfor the simulation (timeslots), t ∈ [0, 95], whi
h represent 15 min of real time. So, a day isbeing represented by 24 · 4 timeslots.The DU has two available te
hni
al me
hanisms to a
hieve balan
e: (1) it may pur
haseor sell power through the wholesale �regulating� or �an
illary servi
es� market, or (2) itmay exer
ise 
ontra
ted 
ontrollable 
apa
ities [17℄ that are o�ered by individual brokers.Controllable 
apa
ities are those that 
an be regulated "upwards" or "downwards" to 
on-sume overprodu
ed energy or redu
e over
onsumption, for balan
ing purposes. Householdexamples in
lude water heaters, heat pumps or CHPs that 
an be remotely manipulated forregulatory a
tions. Other 
ontrollable 
apa
ities may be dishwashers or washing ma
hinesthat are pre-loaded and their starting timeslot is 
hosen a

ording to the balan
ing needs ofthe DU.2.1 CustomersThe 
ustomers are 
omposed by di�erent types of household 
ustomers varying from em-ployees, students to retired persons, 
hildren, shift workers, unemployed et
., representeda

ordingly in the simulation environment. Ea
h household is equipped with a set of house-4



hold applian
es and the persons living in this household perform various domesti
 a
tivities,using household applian
es. People may live in single apartments or family houses. Con-sequently, for ea
h 
onsumer n ∈ N , a spe
i�
 energy demand dn,t is 
al
ulated for everytimeslot t, derived by the a
tivities performed in the household during this spe
i�
 timeslot,as des
ribed in details in Se
tion 3. Additionally, ea
h household has a prede�ned maximumamount of 
ontrollable 
apa
ities. This amount in
ludes 
apa
ities that 
an be manipu-lated by the DU in order to 
over any potential overprodu
tion or redu
e any potentialover
onsumption. More spe
i�
ally, on the 
ustomers's side domesti
 applian
es su
h asthe dishwasher, the washing ma
hine, the heating pump et
 are some of the 
ontrollable
apa
ities available for balan
ing.The 
ustomers intera
t in the tari� market with the brokers, and their 
ontrollable 
a-pa
ities be
ome part of their portfolio. More spe
i�
ally, the brokers are publishing energytari�s to attra
t 
ustomers, 
over their energy demand and make pro�t through these trans-a
tions. The 
ustomers that are 
ontra
ted to a spe
i�
 broker, 
ompose the broker's totaldemand, as an aggregation of all the parti
ular demanded amounts of energy, ∑n∈Bj
dn,t.Furthermore, the aggregation of ea
h 
ustomer's 
ontrollable 
apa
ities 
omprise the bro-ker's total 
ontrollable 
apa
ities that 
an be regulated either downwards in order to balan
epotential overprodu
tion or upwards to balan
e over
onsumption. We denote those 
ontrol-lable 
apa
ities C−

j for ea
h broker Bj and symboli
ally assume that it has negative values,
C−

j ∈ (−∞, 0) for downwards regulation. Respe
tively, the broker's total 
ontrollable 
apa
-ities for upwards regulation (in other words redu
e 
onsumption) are symboli
ally denotedas C+

j ∈ (0,+∞).2.2 Produ
ersLarge-s
ale produ
ers are the Generation Companies, GenCos, attempting to supply theenergy market with the amount needed in order to prevent any shortage periods. Spe
i�
ally,they are produ
ing for ea
h timeslot, t, amounts of energyGk,t whi
h vary among the di�erent5



GenCos, k ∈ N . They intera
t with brokers, in respond to their tari� o�ers, so as to bene�tfrom being part of their portfolio. The brokers's obje
tive is to attra
t as many produ
ers asthey need both to make pro�t and maintain a balan
ed portfolio. To this end, the aggregationof the 
ontra
ted GenCos' produ
tion 
omposes the broker's total produ
tion, ∑k∈Bj
Gk,t.This produ
tion for ea
h GenCo is 
onsidered 
onstant with no variation over the timeslots.This 
hoi
e is supporting our main purpose, whi
h is the thorough investigation of 
ustomer'sdemand and use of 
ontrollable 
apa
ities to the balan
ing dire
tion.2.3 BrokersThe brokers Bj, a
t as intermediary parties in the energy market having transa
tions withboth 
onsumers and produ
ers. Their aim is to make pro�t through those transa
tion,maintaining at the same time a balan
ed portfolio. More spe
i�
ally, for ea
h timeslot t, thenet imbalan
e for ea
h broker Bj is:

xtj =
∑

k∈Bj

Gk,t −
∑

n∈Bj

dn,t (1)and 
an be positive xtj > 0, overprodu
tion and negative xtj < 0, over
onsumption. Thebrokers have to de
lare this net imbalan
e to the DU. An example of broker's total 
ontra
tedsupply and demand is presented in Fig. 1 (the generated demand and supply 
urves 
omefrom the 
ustomer models des
ribed in se
tion 3). The distan
e between the two 
urves inea
h timeslot represents the broker's imbalan
e for the examined timeslot.Additional feature of the brokers' portfolio is the 
ontrollable 
apa
ity that 
an be reg-ulated either upwards or downwards, cj ∈ (C−
j , C

+

j ). This 
ontrollable 
apa
ity range isalso reported to DU, in order to make use of the amount needed to balan
e demand andsupply. In 
ombination with their 
ontrollable 
apa
ities the brokers, de
lare 
osts for up-wards regulation (produ
tion) and pro�ts for downwards regulation (
onsumption). In the�rst 
ase the DU pays to the brokers the 
ost for produ
ing this extra 
apa
ity for balan
e's6
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Figure 1: Broker's Contra
ted Supply and Demand for ea
h time slot in a 24h horizon.sake. In the se
ond 
ase the brokers pay the DU for the revenue they make for having their
ustomers 
onsume this extra energy amount. In both 
ases the main obje
tive for DU isto minimize the payments (from the DU's side) whi
h in the �rst 
ase are negative and these
ond 
ase are positive. More spe
i�
ally, in ea
h timeslot the broker de
lares the amountof 
ontrollable 
apa
ity that is willing to regulate upwards or downwards a

ompanied withthe 
orresponding 
ost and revenue fun
tions. The DU aggregates those de
larations andmakes use of the amounts that minimize both the 
ost payments (positive) and the pro�tpayments (negative). In 
ase of the 
ost and pro�t fun
tions des
ribed below, the problemof the optimal payment allo
ation is a 
onvex-optimization problem.In the presented simulation the brokers use quadrati
 
umulative 
ost fun
tions in or-der to determine the 
ost on the 
ontrollable 
apa
ity units. The quadrati
 
ost fun
tionassumption is based on the fa
t that for ea
h extra 
ontrollable 
apa
ity needed for the bal-an
ing, the broker needs to pay more to the 
orresponding 
ustomer, in order to make thisunit available to the balan
ing me
hanism. Thus, the quadrati
 fun
tion is a good approx-imation of this non-linear relationship between the 
ontrollable 
apa
ity units and the 
ostthat the broker has to pay, to make them available for balan
ing. The general 
ost fun
tionform used in our approa
h is as follows:
7



costup,j(cj) = a · cj2 + b · cj + e (2)with a > 0 and e > 0 in order to have monotoni
ally in
reasing marginal 
ost and tosatisfy the 
onstraint that for cj ∼ 0 we have costup,j(cj) ≥ 0. The graph in Fig. 2 depi
ts avariety of 
umulative 
ost fun
tions 
orresponding to the brokers in the market. We 
hoosea starting 
ost for the 
ontrollable 
apa
ity, so we must always have e 6= 0. As far as the
umulative revenue fun
tion is 
on
erned, the brokers have fun
tions of the following form:
revenuedown,j(cj) = g · 3

√

cj − d (3)with g > 0 and d > 0 in order to have monotoni
ally de
reasing marginal pro�t. Thereason for this 
hoi
e is des
ribed by the idea that no, the broker has t be paid by the 
ustomerfor every extra 
ontrollable unit that the 
ustomer 
an 
onsume (downwards regulation).Thus, for ea
h extra unit, the 
ustomer has to pay less to the broker, sin
e the broker needsthis downward regulation to have a balan
ed portfolio, while the 
ustomer may not need to
onsume this extra unit. Common example is the 
ase that the 
ustomer may turn his/herheating pump on for 
onsuming the extra energy. With this revenue fun
tion, we assure boththat the 
ustomer will 
onsume only in the 
ase that he/she needs to 
onsume (otherwise,there is no reason to pay the broker), and at the same time the broker, has his portfoliosurplus 
onsumed, avoiding the high imbalan
e penalties by the DU. The graph in Fig. 3depi
ts a variety of 
umulative revenue fun
tions 
orresponding to the brokers in the market.The revenues are denotes with negative values, sin
e those revenue amounts need to be paidby the broker to the DU.2.4 Distribution UtilityThe Distribution Utility a
ts as a market operator that is responsible for maintaining thebalan
e between the trends of demand and supply. On every timeslot, the brokers report8



2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

Controllable Capacity (Watt)

C
o
st

o
f
C

a
p
a
c
it
y

($
)

 

 

Broker 1
Broker 2
Broker 3

Figure 2: Cumulative 
ost fun
tions for 
ontrollable 
apa
ities, upwards regulated.

−1000 −900 −800 −700 −600 −500 −400 −300 −200 −100 0
−80

−70

−60

−50

−40

−30

−20

−10

Controllable Capacity downwards regulated (Watt)

P
ro

fi
t

c
o
m

in
g

fr
o
m

c
a
p
a
c
it
y

re
g
u
la

ti
o
n

($
)

 

 

Broker 1
Broker 2
Broker 3Figure 3: Cumulative revenue fun
tions for 
ontrollable 
apa
ities, downwards regulated.to the DU the net imbalan
e in their portfolio, xtj . The DU in return imposes payments orrewards that 
orrespond to 
ontrollable 
apa
ities used for the balan
ing pro
edure. Thisallo
ation must be optimal and provide 
redits to the brokers that parti
ipate. The paymentallo
ation me
hanism is des
ribed in Se
tion 4.
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3 Customer Modeling3.1 Residential Model Des
riptionA realisti
 
ustomer model will provide a

urate validation of the proposed balan
ing me
h-anism. Thus, we 
reate implement various load pro�les based on statisti
al data referring tothe applian
e availability, the residents' s
hedule, as well as applian
es' 
onsumption dataover the day. The saturation data for ea
h applian
e determine the per
entage of the pop-ulation that have possession of ea
h applian
e. These data 
ome from the "Bundesverbandder Energie und Wasserwirts
haft (2009)" as presented in [8℄. Fig. 4 depi
ts the modelingpro
ess as followed to 
reate the individual 
ustomer models. The 
reation of ea
h individual
ustomer is a highly dynami
 pro
ess, as ea
h household is 
reated in a sto
hasti
 way withvarious features and a
tivities interdependen
ies. In Fig. 5 are presented the applian
esin
luded and the respe
tive saturation.

Figure 4: Residential load 
urve 
reation.Having spe
i�ed the applian
e-set available in ea
h household, the o

upan
y pro�leshould be de�ned. In order to spe
ify the o

upan
y of ea
h household we assume the H0pro�le as presented in [8℄. A

ording to H0 pro�le the population is divided to workingpeople, students, et
. who are present in the household during pre-spe
i�ed periods before10



Figure 5: Applian
e saturation (sour
e H0 pro�le).Table 1: H0 pro�le and the share of ea
h group.Working type Share (%) Start work (hour of the day) Absen
e for work (hours)worker, student 53 [7− 8.30] 8unemployed, retired 40 - -shift worker 7 random 8or after their absen
e for working a
tivities, to retired, unemployed, et
. who are mostlypresent in the household and shift-workers who are absent from household during unspe
i�edperiods over the day. Table 1 is presenting the share of ea
h group in the whole population.For the working people we assume that they start working in the interval [7 − 8.30], workfor 8 hours and return to their domesti
 a
tivities during the interval [17 − 18.30]. Theunemployed/retired people are assumed to wake up in the morning in the same interval
[7− 8.30] and spend most of their time in domesti
 a
tivities.In order to 
reate the residential load 
urve 
orresponding to ea
h household, the ap-plian
es fun
tionality has to be divided into 
y
les lasting one timeslot (15 mins) and thestarting points of the di�erent a
tivities to be allo
ated a

ording to the 
ustomer's presen
eor absen
e. At this point a logi
al sequen
e of a
tivities is followed and the di�erent level ofa
tivities dependen
ies is determined based on the people's o

upan
y. During 
ustomer'sabsen
e or over night we assume 
onsumption from applian
es that fun
tion independentlyfrom human's presen
e (i.e washing ma
hine that has been loaded by the resident, 
hargersand other ele
troni
 devi
es) and standby 
onsumption from the applian
es available in ea
h11



Table 2: Applian
es data referring to the power 
onsumption and stand-by 
onsumption,total fun
tionality duration and daily probability of o

urren
e. Data for power 
onsumptionand 
y
les [8℄, for standby 
onsumption [15℄, and probability of o

urren
e [13℄.Applian
e Consumption Stand-by Duration Probability(W) Consumpt.(W) (min) of O

urren
eWashing ma
hine 600 6 105 0.32Dryer 1410 2.2 105 0.29Refrigerator 140 1.7 15 1Freezer 106 1.7 15 1Stove and Oven 1840 2.2 30 0.585Ele
troni
 Devi
es 150 67 90 1Lighting Installations 350 0 120 1Cir
ulation Pump 90 2.2 975 0.3Dishwasher 530 1.3 135 1Instantaneous water heater 12000 0 15 0.3household. The data used for ea
h applian
e are depi
ted in Table 2.In order to determine the starting point of ea
h a
tivity in
luding spe
i�
 applian
es, wetake into a

ount the probabilities of o

urren
e in a day [13℄ as presented in Table 2. Thoseprobabilities are 
al
ulated as a weighted average from the probabilities of o

urren
e duringthe weekdays and the weekends. For the ele
troni
 devi
es the average of all those devi
es'probabilities is used (TV, PC, stereo et
.). Consequently, a

ording to the probability ofo

urren
e, the saturation and the working type of ea
h 
ustomer we 
reate individual loadpro�les, whi
h vary on the applian
es available, the working hours et
. The presented modelis highly dynami
 as it in
ludes all kind of a
tivities in a regular household and takes intoa

ount the interdependen
ies between them. Additionally, depending on the number of
ustomers residing in a spe
i�
 household, the 
onsumption varies as there may be overlapin ea
h person's a
tivities. Using the 
urrent model, we are able to simulate large populationsof residential 
ustomers, in
luding all the parti
ular residential 
onsumption 
hara
teristi
s.
12



3.1.1 Customer modeling veri�
ationThe proposed model is being tested against real-world data in order to 
on�rm its a

ura
y.The data available are household 
onsumption measurements referring to time slots of 15minutes for a week's time horizon and are obtained in 
ooperation with European Distribu-tion Utility. They are 
oming from 24 households in the Netherlands and they are used togenerate an aggregated pro�le whi
h is tested against the generated pro�le from our model.Those data are 
onsumption measurements, obtained before any balan
ing a
tions. The se
-ond pro�le is generated for 24 load 
urves pi
ked randomly from our simulation. Those 24load 
urves are aggregating data from 
onsumption over a week's horizon. The 
omparisonin the two pro�les is presented in the Fig. 6. We use Pearson's 
oe�
ient r = 83% as agoodness of �t for the two 
urves [? ℄. This means that the aggregation of 24 weekly load
urves is 83% 
orrelated with the respe
tive aggregation of 24 weekly load 
urves pi
kedrandomly from the real 
onsumption data, whi
h indi
ates a very high �t.
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Figure 6: Generated load 
urve against load 
urve from real data.
4 Validation of the Balan
ing AlgorithmWithin the 
ontext of the simulation environment presented in Se
tion 2 we validate thebalan
ing me
hanism proposed in [6℄. More spe
i�
ally in this balan
ing me
hanism the13



VCG [6℄ payment allo
ation is used, where ea
h broker pays "opportunity 
ost" that itspresen
e introdu
es to all the other brokers. If the assumption of no real-time mat
hing ofthe brokers' imbalan
es holds (the brokers are not allowed to 
ounterbalan
e ea
h other'simbalan
e), the DU is responsible for making use of the 
ontrollable 
apa
ities available inea
h broker's portfolio to a
hieve the optimal 
ombination in order to have minimal 
ost.A

ording to the VCG me
hanism (de�ned on the minimal 
ost and not on the maximumwell fare) the payments to or from ith broker in the simulation are:
pi(δ) = −

∑

j 6=i

δ−i
j · costj(δ−i

j ) +
∑

j 6=i

δ−i
j · costj(δij) (4)where δ is the ve
tor with the optimal 
apa
ity allo
ation and δ−i

j is the ve
tor with theoptimal 
apa
ity allo
ation if we ex
lude the ith broker, i.e. the 
ontrollable 
apa
ity for thisbroker is 
onsidered 0. For extended proof and explanation of the me
hanism see [6, 12℄. The
ost fun
tion for the 
orresponding 
ontrollable 
apa
ities is denoted by costj(·). If xi ea
hbroker's imbalan
e, we have ∑

i∈N xi < 0 in 
ase of over 
onsumption and ∑

i∈N xi > 0 forover produ
tion. In the �rst 
ase, the 
ontrollable 
apa
ities (CC) for upward regulation areused (CC > 0) and in the se
ond 
ase the 
ontrollable 
apa
ities for downward regulationare used (CC < 0). In both 
ases, if we assume 
ost and revenue fun
tions as des
ribed inSe
tion 2.3, the problem of de�ning the optimal 
apa
ity and payment allo
ation is a 
onvexoptimization problem [5℄ and 
an be solved by various available methods (eg. interior-pointmethods et
).The proposed balan
ing me
hanism applies load shifting in the sense that in order toresolve the imbalan
es in the 
urrent timeslot, the loads 
ontrolled, are shifted to the nexttimeslot. Thus, the Demand Side Management (DSM) te
hnique used, avoids avalan
hee�e
ts that o

ur from long term load shifting or postponing.Consider the optimal payment allo
ation as presented in Table 3. In this s
enario we havea total imbalan
e ∑i∈N xi = −9.6 · 104 (over
onsumption), so the 
ontrollable 
apa
ities for14



Table 3: Payment allo
ation for the 
ontrollable 
apa
ities a

ording to VCG me
hanismBroker Surplus Control. Cost pi Capa
ity Used(W) Capa
ity(W) ($) ($) (W)1 −1.24 · 104 4.76 · 104 3.62x2
1 + 8.86x1 + 4.69 −0.36 · 109 0.69 · 1042 −2.01 · 104 8.98 · 104 0.98x2
2 + 8.28x2 + 1.29 −1.51 · 109 2.55 · 1043 −1.81 · 104 5.11 · 104 1.24x2
3 + 8.60x3 + 2.64 −1.14 · 109 2.02 · 1044 −3.43 · 104 4.27 · 104 5.84x2
4 + 0.22x4 + 0.05 −0.22 · 109 0.43 · 1045 −1.17 · 104 6.64 · 104 0.63x2
5 + 1.46x5 + 0.61 −2.69 · 109 3.97 · 104upward regulation are used. Here we assume 5 brokers in the simulation and 50 
onsumersand 50 produ
ers. Ea
h broker's portfolio imbalan
e is depi
ted in the 
olumn Surplus.Further, ea
h broker's 
ontrollable 
apa
ity for upward regulation is presented in the 
olumnControl. Capa
ity. For ea
h broker, the 
ost fun
tion for the 
ontrollable 
apa
ity is de�nedin the 
olumn Cost. We assume the 
ost fun
tions cost(ci) = a · c2i + b · ci + e satisfyingthe 
onstraints presented in Se
tion 2.3. With ci,max is denoted the 
ontrollable 
apa
itythat ea
h broker makes available to the DU for balan
ing and x the total imbalan
e in themarket for the 
urrent timeslot. In order to 
al
ulate the optimal ve
tor δ with the 
apa
ityallo
ation, we 
on
lude to the minimization problem:

minimize
∑

i∈N cost(ci)

subject to 0 < xi < ci,max

and
∑

i∈N xi = x

(5)whi
h is a quadrati
 optimization problem. N is the number of the brokers in the market.In the 
ase that the 
ost fun
tions on the broker's side are in the form des
ribed in Se
tion2.3, the problem is 
onvex and various approa
hes 
an be used in order to rea
h to a solution(interior-point et
.).4.1 S
alability AnalysisA 
ru
ial fa
tor for the appli
ability of the balan
ing algorithm is the s
alability. Under theassumption that the 
ost and pro�t fun
tions, on the broker's side, have the form des
ribed15



in Se
tion 2.3, the optimization problem for the payment allo
ation is 
onvex [5? ℄. In Fig.7 the runtime of our algorithm is presented in relation to the number of 
ustomers in thesimulation. For simpli
ity's sake, but without loss of generality, we assume equal number ofprodu
ers and 
onsumers in the energy market ([1-500℄ 
onsumers, [1-500℄ produ
ers). Thebrokers in this experiment are varying in the range of [1-15℄. The presented runtime for everynumber of 
ustomers in
ludes the time needed for 
al
ulating the 
ustomer's 
onsumption atthe examined timeslot, the time needed for de�ning the optimal 
apa
ity 
ombination andthe runtime spent for payment allo
ation. The in
rease of the 
ustomers does not lead to astri
tly linear in
rease of the runtime, sin
e for ea
h group of 
ustomers the applian
es, thepersons, the s
hedules vary. As a result, the 
ontrollable 
apa
ities are di�erent. This leads todi�erent optimization problems for every number of 
ustomers (
onsumers and produ
ers),whi
h are di�erentiated on the runtime for de�ning the optimal solution. Another fa
torwhi
h a�e
ts the runtime is that the optimization di�ers in 
ase of surplus or shortage. In
ase of surplus the DU makes use of the 
ontrollable 
apa
ities regulated downwards andminimizes the payments over the fun
tion revenuedown,j(cj) = g · 3

√

cj − d while in 
ase ofshortage the upwards regulated 
ontrollable 
apa
ities are used and the optimization problemis referring to quadrati
 fun
tions costup,j(cj) = a · cj2 + b · cj + e. In Fig. 7 we present theruntime as fun
tion of the number of 
ustomers as well as the respe
tive standard deviation.On the X axis there are the groups of 
ustomers su
h as 1 
orresponds to [0−100] 
ustomers,2 to [101− 200] et
.The size of the error bar is indi
ating the variability of the runtime depending on thenumber of brokers in the market and at the same time the sto
hasti
 nature of the model. Thenumber of brokers are sele
ted based on realisti
 
riteria. In most of the existing Europeanand US energy markets the maximum number of energy retailers 2 (brokers) is 6 [? ℄. Soour assumptions about the brokers satis�es the realisti
 
onditions.2http://www.es
osa.sa.gov.au/
onsumer-information/energy-retailers.aspx
16
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Figure 7: Runtime as a relation to the number of 
ustomers in the energy market, fordi�erent number of brokers [1-15℄. The 
lusters of 
ustomers indi
ate 
ustomer groupingsu
h as [0-100℄, [101-200℄,...[901-1000℄.4.2 Degree of TruthfulnessThe appli
ation of the VCG me
hanism for the optimal payment allo
ation, provides in
en-tives for ensuring the truthfulness with respe
t to the de
laration of the 
ost and revenuefun
tion. Possible untruthful de
laration from the broker's side in order to make largerpro�t, leads to pro�t redu
tion instead of in
rease.In the following s
enario we 
onsider a simulation environment with 50 
onsumers and
50 produ
ers and 3 brokers. Let the 3rd broker be untruthful regarding the 
ost fun
tion(in this 
ase pro�t) for regulating upwards the 
ontrollable 
apa
ity available in the broker'sportfolio. All the other settings and parameters remain 
onstant during this s
enario (i.ethe 
onsumption, the produ
tion, ea
h broker's imbalan
e and the pro�t fun
tions of therest of the brokers remain un
hanged). The truthfulness of the broker's pro�t fun
tion isindi
ated as a per
entage on the real pro�t fun
tion. The net imbalan
e in the market forthe examined timeslot is ∑iǫN xi = 657.94 so the 
ontrollable 
apa
ities for downwards reg-ulation will be used. More spe
i�
ally, the real data related to this example and the datain�uen
ed by the untruthful de
laration are depi
ted on the Table 4. It is observed thateven when the broker de
lares "double" 
ost as the a
tual 
ost, the pro�t is less than in17



Table 4: Payment allo
ation to the 
ontrollable 
apa
ities a

ording to VCG me
hanism,with and without being a�e
ted by untruthful de
laration from the 3rd broker.Broker Revenue pi Revenue Pro�t pi Pro�tfun
tion($/W ) ($) ($) fun
tion($) ($) ($)1 6.03 · 3
√
x1 − 105 10.79 28.25 6.03 · 3

√
x1 − 105 9.88 22.692 3.67 · 3

√
x2 − 57 5.68 12.67 3.67 · 3

√
x2 − 57 4.90 10.413 5.86 · 3

√
x3 − 26 6.71 26.95 11.72 · 3

√
x3 − 26 19.95 24.18
ase of truthful de
laration. In Fig. 8 is presented the redu
tion of the pro�t against thefra
tion untruthfulFunction/truthfulFunction. As we 
an see the pro�t under untruthfulde
laration rea
hes the maximum value only at one point whi
h is for truthful 
ost de
lara-tion. Additionally, the 
urve is not symmetri
 in the 
orresponding 
ases of equal redu
tionor in
rease in the per
entage of the truthfulness. That is be
ause the pro�t is given by theequation profit = revenue−cost. So the revenue and 
ost for the 3rd broker who is de
laring"fake" fun
tion are 
hanging with unequal rates and as a 
onsequen
e their di�eren
e is mod-i�ed a

ordingly. From this graph we derive the 
on
lusion that if the broker de
ides to over-exer
ise the 
ontrollable 
apa
ities available (untruthfulFunction/truthfulFunction > 1),the redu
tion in the expe
ted pro�t will not be as mu
h the same as the redu
tion in thepro�t resulting from under-exer
ise (untruthfulFunction/truthfulFunction < 1). Thisresult, is bene�
ial for the brokering strategies, sin
e the a priori knowledge of the impa
tthat the over-exer
ise or under-exer
ise may have on the 
ost, allows the broker to be more�exible in the de
isions he is for
ed to make in real time. Ea
h attempt from the broker'sside to predi
t this impa
t, is a 
omplex ma
hine learning task that ne
essities a

uratepredi
tions [11℄. Additionally, these predi
tion tasks may add 
omputational load and thede
ision may not be feasible in the tight time 
onstraints of the simulation environment.Finally, this result proves that there is signi�
ant loss for the individual that deviates fromthe truthful behavior, while theory only proves that there is no gain.

18
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Profit for untruthful declarationFigure 8: Pro�t for the 3rd broker a

ording to degree of truthfulness.5 Related Work5.1 Residential Load Curve SimulationModeling the 
ustomer in high pre
ision is key fa
tor for an a

urate balan
ing approa
hin the energy market. As the pre
ise 
ustomer modeling, redu
es the extent of un
ertainty,allows for e�
ient balan
ing algorithms that are 
apable of preventing unlikely energy short-ages. With respe
t to the modeling domesti
 load 
urves, various approa
hes have beenproposed among the literature. The authors in [13℄ present a bottom-up modeling approa
hwhere saturation information for the domesti
 applian
es are 
olle
ted from households inFinland. They propose prioritization for the applian
es, so as to a
hieve Demand Side Man-agement (DSM ) taking into a

ount ea
h devi
e's priority. Nevertheless, no sophisti
atedDSM is applied in order to resolve imbalan
es. Furthermore, in [18℄ a sto
hasti
 approa
hbased on Markov-
hain models is proposed in order to 
reate domesti
 load 
urves, but theauthors do not model the applian
es available in the household. They just de�ne the o

u-pan
y pro�les and based on them 
reate the load 
urves. In [10℄ a method for generatingdomesti
 and Commer
ial & Industrial load 
urves based on 
onsumption data 
olle
tedfrom utilities in Sao Paolo, Brazil, is proposed. They perform statisti
al analysis to 
on
ludeto some representative load 
urves, as opposed to bottom-up approa
h that we use. The19



authors in [8℄ present a bottom-up household modeling approa
h and apply demand responseprogrammes. They use stylized data to verify their results, whereas we use real-word datato evaluate the load 
urves with 83% degree of �t and made the model more dynami
 in thesense of a
tivities interdependen
ies and shifting to the next timeslot. Our proposed bal-an
ing approa
h 
onstraints the load shifting up until the next timeslot, in order to preventhuge avalan
he e�e
ts from 
ontinuous load shifting. Overall our modeling approa
h 
om-bines both applian
e information and all the 
ustomer types from related works mentioned,so it is more 
omplete and representative of the a
tual 
ustomer's behavior.5.2 Balan
ing in the energy marketBalan
ing in the energy market is widely investigated, as to develop su

essful balan
ingstrategies and eliminate imbalan
es between supply and demand. In [7℄ the authors assumethat the balan
ing transa
tions take pla
e only in the reserve market (following the Germanmarket prototype). The balan
ing has two steps: �rstly reserve 
apa
ity is pro
ured, andse
ondly in 
ase of imbalan
e the balan
ing energy is delivered, based on the reserve 
apa
ity.A

ording to that, only a two-part tari� 
ould be e�
ient. The �rst part de
laring the pri
efor the 
apa
ity and the se
ond part the pri
e for the energy delivered. The authors in[9℄ propose a balan
ing me
hanism based on bidding for reserve 
apa
ities. In their bids,generators in
lude the opportunity 
ost of withholding reserve 
apa
ities. During the day-ahead au
tion the proposed me
hanism operates as a one-shot au
tion, for whi
h the SystemOperator 
olle
ts bids for every hour of the next day. During the real-time phase for ea
h hourof the following day, the balan
ing requirements are announ
ed, and the System Operator
omputes an optimal allo
ation to settle the balan
ing demand. The authors in [14℄ 
onsiderthree balan
ing elements. First the program responsibility where exist both produ
ers and
onsumers and inform TenneT (system operator) about their demand and supply. Se
ondthe single-buyer market for regulation and third the reserve power where TenneT tries toresolve unexpe
ted imbalan
es. 20



6 Con
lusions and Future WorkThe presented balan
ing approa
h is deployed within the 
ontext of Power Trading AgentCompetition [12℄. It resolves imbalan
es for the 
urrent timeslot, assuming the existen
e of
ontrollable 
apa
ities on the 
ustomers' side.The proposed me
hanism suggests load shiftingfor the next timeslot, sin
e the 
apa
ity that regulated in the 
urrent timeslot, shows up inthe next timeslot. We have implemented 
ustomer models using the bottom-up approa
hand evaluated them against real-world 
onsumption data, obtaining a high degree of �t. Wehave validated the appli
ability of the proposed algorithm in pra
ti
e and we have veri�edthe s
alability of the algorithm to thousands of 
ustomers that may di�erentiate on the
onsumption features. Finally, we proved that the proposed balan
ing me
hanism providesin
entives to the 
ustomers for truthful 
ost de
laration. Every deviation from the truthful
ost value, leads to pro�t redu
tion for the 
orresponding broker. Future extensions ofthe 
urrent work, is to model the 
ustomer in the devi
e level and make use of higherresolution 
ost fun
tions that will re�e
t the exa
t 
ost of ea
h 
ontrollable 
apa
ity inparti
ular (i.e. di�erent 
ost for heat pump, Air Conditioning et
). An additional extensionis to de�ne the exa
t 
ost and pro�t fun
tions re�e
ting the spe
i�
 
ontrollable 
apa
itiesavailability in the broker's portfolio for every timeslot. This will make the system moredynami
, as the fun
tions will vary among the di�erent timeslots as the broker's portfoliowill be 
hanging. With respe
t to the balan
ing approa
h, we are planning to extend theme
hanism in resolving the imbalan
es a
ross timeslots. Finally, we will extend the 
ustomermodels both to 
reating the produ
er models and to embedding in the 
onsumer produ
tionfeatures (su
h as PEVs, photovoltai
s et
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